Git

LING 539: Statistical natural language processing

This course introduces the key concepts underlying statistical natural language processing. Students will learn a variety of techniques for the computational modeling of natural language, including: n-gram models, smoothing, Hidden Markov models, Bayesian Inference, Expectation Maximization, Viterbi, Inside-Outside Algorithm for Probabilistic Context-Free Grammars, and higher-order language models. Graduate-level requirements include assignments of greater scope than undergraduate assignments. In addition to being more in-depth, graduate assignments are typically longer and additional readings are required.

Course Credits
3

LING 508: Computational techniques for linguists

Students are introduced to computer programming as it pertains to collecting and analyzing linguistic data. The particular programming language is chosen at the discretion of the instructor. Graduate-level requirements include more challenging exams; 50% greater contribution to their respective group projects; 9 instead of 6 assignment; additional readings from the primary literature.

Course Credits
3

INFO 557: Neural Networks

Neural networks are a branch of machine learning that combines a large number of simple computational units to allow computers to learn from and generalize over complex patterns in data. Students in this course will learn how to train and optimize feed forward, convolutional, and recurrent neural networks for tasks such as text classification, image recognition, and game playing.

Course Credits
3