Science/Reproducibility

SOC 501: Computational Social Science: Introduction to Methods, Approaches, and Theories

This graduate course will train you in the methods, conceptual approaches, and theories of computational social science. It is set up to welcome people from many different backgrounds, particularly those with or without prior exposure to programming, statistics, or the social sciences. You will learn how to design research projects and answer research questions motivated and situated in social sciences discourses and theories. The course will survey canonical and cutting-edge methods and techniques. This includes methodological approaches in Big Data analysis, data visualization, social network analysis, agent-based modeling, and natural language processing. You will learn to identify and develop variables, mechanisms, and theoretical framing grounded and motivated within the social sciences. We will also address the growing ethical challenges and considerations associated with computational social science methods and approaches.

INFO 529 Applied Cyberinfrastructure Concepts

Students will learn from experts from projects that have developed widely adopted foundational Cyberinfrastrcutrue resources, followed by hands-on laboratory exercises focused around those resources. Students will use these resources and gain practical experience from laboratory exercises for a final project using a data set and meeting requirements provided by domain scientists. Students will be provided access to computer resources at: UA campus clusters, iPlant Collaborative and at NSF XSEDE. Students will also learn to write a proposal for obtaining future allocation to large scale national resources through XSEDE. Graduate-level requirements include reading a paper related to cyberinfrastructure, present it to the class, and lead a discussion on the paper.

Course Credits
3

INFO 510: Bayesian Modeling and Inference

Bayesian modeling and inference is a powerful modern approach to representing the statistics of the world, reasoning about the world in the face of uncertainty, and learning about it from data. It cleanly separates the notions of representation, reasoning, and learning. It provides a principled framework for combining multiple source of information such as prior knowledge about the world with evidence about a particular case in observed data. This course will provide a solid introduction to the methodology and associated techniques, and show how they are applied in diverse domains ranging from computer vision to molecular biology to astronomy. Graduate-level requirements include different exams requiring greater depth of understanding of topics, and will be assigned questions based on graduate-student specific assignments topics.

Course Credits
3

INFO 514: Computational Social Science

This course will guide students through advanced applications of computational methods for social science research. Students will be encouraged to consider social problems from across sectors, like health science, education, environmental policy and business. Particular attention will be given to the collection and use of data to study social networks, online communities, electronic commerce and digital marketing. Students will consider the many research designs used in contemporary social research and will learn to think critically about claims of causality, mechanisms, and generalization in big data studies. Graduate requirements include additional readings and a more in-depth final paper than is required at the undergraduate level.

Course Credits
3