Numerical

LING 508: Computational techniques for linguists

Students are introduced to computer programming as it pertains to collecting and analyzing linguistic data. The particular programming language is chosen at the discretion of the instructor. Graduate-level requirements include more challenging exams; 50% greater contribution to their respective group projects; 9 instead of 6 assignment; additional readings from the primary literature.

Course Credits
3

SOC 561: Programming for the Social Sciences

Although standard graduate statistics courses prepare students to design and run statistical analyses, courses generally do not spend a great deal of time discussing data management and workflows, which are critical to making research replicable, efficient, and accurate. This is unfortunate because the best designed statistical analysis is easily undone by poor data management, whether through misconstructed variables, unreplicable workflows, and/or poorly commented or documented workflows and programs. This course addresses this oversight by focusing on computational tools for data management and workflows, including using software packages such as Stata and python.

Course Credits
3

INFO 557: Neural Networks

Neural networks are a branch of machine learning that combines a large number of simple computational units to allow computers to learn from and generalize over complex patterns in data. Students in this course will learn how to train and optimize feed forward, convolutional, and recurrent neural networks for tasks such as text classification, image recognition, and game playing.

Course Credits
3

INFO 550: Artificial Intelligence

The methods and tools of Artificial Intelligence used to provide systems with the ability to autonomously problem solve and reason with uncertain information. Topics include: problem solving (search spaces, uninformed and informed search, games, constraint satisfaction), principles of knowledge representation and reasoning (propositional and first-order logic, logical inference, planning), and representing and reasoning with uncertainty (Bayesian networks, probabilistic inference, decision theory). Graduate-level requirements include additional reading of supplementary material, more rigorous tests and homework assignments, and a more sophisticated course project. Sophisticated application and technique.

Course Credits
3

INFO 523: Data Mining and Discovery

This course will introduce students to the concepts and techniques of data mining for knowledge discovery. It includes methods developed in the fields of statistics, large-scale data analytics, machine learning, pattern recognition, database technology and artificial intelligence for automatic or semi-automatic analysis of large quantities of data to extract previously unknown interesting patterns. Topics include understanding varieties of data, data preprocessing, classification, association and correlation rule analysis, cluster analysis, outlier detection, and data mining trends and research frontiers. We will use software packages for data mining, explaining the underlying algorithms and their use and limitations. The course include laboratory exercises, with data mining case studies using data from many different resources such as social networks, linguistics, geo-spatial applications, marketing and/or psychology.

Course Credits
3

INFO 529 Applied Cyberinfrastructure Concepts

Students will learn from experts from projects that have developed widely adopted foundational Cyberinfrastrcutrue resources, followed by hands-on laboratory exercises focused around those resources. Students will use these resources and gain practical experience from laboratory exercises for a final project using a data set and meeting requirements provided by domain scientists. Students will be provided access to computer resources at: UA campus clusters, iPlant Collaborative and at NSF XSEDE. Students will also learn to write a proposal for obtaining future allocation to large scale national resources through XSEDE. Graduate-level requirements include reading a paper related to cyberinfrastructure, present it to the class, and lead a discussion on the paper.

Course Credits
3